Fuzzy Geographically Weighted Clustering

نویسندگان

  • G. A. Mason
  • R. D. Jacobson
چکیده

Geodemographic analysis has been described as “the analysis of spatially referenced geodemographic and lifestyle data” (See and Openshaw, 2001, p.269) It is widely used in the public and private sectors for the planning and provision of products and services. Geodemographic analysis often uses clustering techniques which are used to classify the geodemographic data into groups, making the data more manageable for analysis purposes. Clustering identifies a number of geodemographic groups (clusters), each group having a particular geodemographic profile. Each geographical area under consideration is then assigned to a group based on its similarity to the group profile. Fuzzy clustering offers a method of clustering that uses the principles of fuzzy logic to calculate a membership value for each subject in each of the groups. So rather than assigning a geographical area to a single group, each area is allocated a membership value in each of the groups (clusters), thus helping to overcome the issues of ecological fallacy. The fuzzy clustering algorithm typically used in geodemographic analysis is Bezdek's fuzzy c-means clustering algorithm known as FCM (Bezdek et. al., 1984). Fuzzy geodemographic analysis using FCM has been investigated by Feng and Flowerdew (1998, 1999), and See (1999), but has received scant attention since an exception being the recent investigation by one of the authors (Mason, 2006). This paper proposes a modification to the fuzzy clustering algorithm to incorporate geographical effects, suitable for geodemographic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Approaches to Context Variables in Fuzzy Geographically Weighted Clustering

Fuzzy Geographically Weighted Clustering (FGWC) is considered as a suitable tool for the analysis of geo-demographic data that assists the provision and planning of products and services to local people. Context variables were attached to FGWC in order to accelerate the computing speed of the algorithm and to focus the results on the domain of interests. Nonetheless, the determination of exact,...

متن کامل

Fuzzy approaches to context variable in fuzzy geographically weighted clustering

Fuzzy Geographically Weighted Clustering (FGWC) is considered as a suitable tool for the analysis of geo-demographic data that assists the provision and planning of products and services to local people. Context variables were attached to FGWC in order to accelerate the computing speed of the algorithm and to focus the results on the domain of interests. Nonetheless, the determination of exact,...

متن کامل

Local Models for the Analysis of Spatially Varying Relationships in a Lignite Deposit

Relationships between geographically referenced variables are usually spatially heterogeneous and, to account for such variations, local models are necessary. This paper compares the Geographically Weighted Regression (GWR) model, usually used to integrate and examine the spatial heterogeneity of a relationship, and the Fuzzy Clustering-Based Least Squares (FCBLS) model for the analysis of spat...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007